
Journal of Applied Mathematics and Mechanics 70 (2006) 647–656

An asymptotic approach in problems of crack identification�
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Abstract

An asymptotic approach to solving problems of the identification of a rectilinear crack of small relative size is presented. The
solution of the direct problem is reduced to solving a boundary integral equation. Using the proposed approach, its kernel is
investigated, and the main part of the asymptotic form is singled out. The inverse problem of determining the crack parameters
from prescribed information on the amplitudes of the displacement on the boundary of a layer is solved. Transcendental equations
are obtained, from which the characteristics of a crack are determined in stages. Numerical results of the solution of the inverse
problem are presented.
© 2006 Elsevier Ltd. All rights reserved.

Problems of identifying internal defects located at the joint of regions, arising as a result of poor bonding (or
welding) of materials,1,2 vertical cracks in a layer or half-space and rectilinear defects emerging at the boundary
of a region3 have been investigated in some detail. A review is available on the current state of research on the
theory of inverse crack problems.2 Problems of identifying cracks in finite bodies have been investigated far less;
the greatest progress in solving such problems has been possible when a priori information has been available as
to the particular plane in which the crack, or system of cracks, is located. In this case, the identification prob-
lem can be divided into the problem of determining the parameters of the plane to which the crack belongs, its
centre in this plane and its characteristic linear dimensions. The determination of the plane involves introducing a
certain “non-reciprocity” functional, with the aid of which it is possible to single out the “main” parameters and
to find them from certain simple relations.2 At the same time, problems of identifying internal crack-like defects
of arbitrary configuration have not been investigated to any great extent, although direct problems concerning the
construction of displacement fields in bodies with such defects have been studied in some detail.4 This is due to
the increase in the number of crack-determining parameters, which leads to an increase in the dimensions of the
search space. Here, a priori information on the size of cracks can considerably simplify the procedure for crack
identification.

When investigating the multiparameter problem of the vibrations of an elastic layer of thickness h with a crack of
characteristic length l, we will distinguish three dimensionless parameters �1 = l/h, �2 = �h/c (c is the characteristic
velocity of waves in the medium) and �3 = �l/c = �1�2 (� is the frequency of the vibrations). Note that the solution of
the inverse identification problem is constructed in the region of variation of the parameter �2 ≥ �∗, which corresponds
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to considering vibrations at a frequency higher than the critical frequency when there are travelling waves in the
layer.

Below, an asymptotic approach is proposed that can be examined in the range of variation of the parameters
�1«1, �2 ≥ �∗, which corresponds to the case of cracks of small relative size, and here the procedure for solving both
the direct and the inverse problem can be simplified considerably. It must also be pointed out that recommendations of
practical flaw detection on choosing the vibration frequency correspond to values of the dimensionless parameter �3 of
the order of unity and higher. As shown by calculations to reconstruct the crack parameters, the asymptotic approach
also covers the range of variation of the parameters when the wavelength of the probed signal is greater than the crack
length, i.e. �3 ≤ 1.

1. Statement of the problem

The problem of identifying an internal crack-like defect in an orthotropic layer of thickness h from the displacement
fields on part of the boundary of the layer S21 is considered. Vibrations are caused by a load applied to part of the
upper boundary of the layer S20. The lower boundary of the layer S1 is rigidly clamped. The crack is modelled as a
mathematical cut with sides s±0 on which the components of the displacement field suffer a discontinuity

which is characterized by the components of the vector function of the opening of the crack. On the basis of dislocation
theory,5 the action of the crack is replaced by the action of fictive mass forces, which are expressed in terms of the
components of the opening of the crack

where n±
j are the components of the unit vectors of the normal to the sides of the crack s±0 .

The steady-state vibration is considered, which enables us to separate out the time factor and to represent components
of the displacement vector in the form uj = uj(x)e−i�t, where x = (x1, x3) and � is the frequency of the vibrations. Then,
after separating out the time factor, the problem is described by the following boundary-value problem

(1.1)

(1.2)

(1.3)

where � is the density of the medium and Cijkl are the components of the constants of elasticity tensor of the material,
that satisfy the usual relations of symmetry and positive definiteness.

The problem of crack identification using is solved information on the displacement field, measured on a part of the
upper boundary of the layer S21 = {x1 ∈ [c, d], x3 = h}

(1.4)

Since the region considered contains an infinitely distant point, the formulation of the problem of the condition of
the radiation of waves at infinity, in the formulation of which the limiting absorption principle is used,6 is closed.

We will select the coordinate axes such that the axes of elastic symmetry of the orthotropic material coincide with
the axes of the coordinate system, and we will then assume that the crack is a tunnel slit whose axis coincides with
the x2 axis. Then, the initial problem (1.1)–(1.3) breaks down into two secondary problems: the problem of anti planar
vibrations of an orthotropic layer with a crack of arbitrary configuration (Problem 1), when the component u2 = u(x1,
x3) is non-zero and in problem (1.1)–(1.3) we assume i, j = 2, and the plane problem of the vibrations of a layer with a
crack (Problem 2); in this case, the components u1(x1, x3), u3(x1, x3) will be non-zero, and in problem (1.1)–(1.3) we
assume that i, j = 1.3.
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Below we will consider the case of a concentrated load of magnitude p0, applied at a point with coordinates (−L, h)
(L > 0), in the tangential direction to the boundary for the antiplanar problem and in the normal direction for the plane
problem.

2. The solution of the direct problems

2.1. Reduction to integral equations

Solutions of the direct problems are constructed using Green’s functions for the layer4,7,8 and the reciprocity
theorem.5

In the case of anti planar vibrations (Problem 1), we have the following representation of the displacement field in
the layer

(2.1)

Here � is the contour in the complex plane, which is selected in accordance with the limiting absorption principle and
gets round the singularities of the integrands in a certain way.8

For plane strain (Problem 2) the components of the displacement field are defined by similar representations

(2.2)

where �
(m)
ij are the components of the stress tensor (singular solutions), determined using representations for Green’s

functions and Hooke’s law. In the case of a region of the layer type, similar to the well-known procedure,5 Green’s
functions can be represented in the form of Fourier integrals along the contour � similar to representation (2.1). In
expressions (2.1) and (2.2), the first terms are standard fields comprising the displacement fields in a medium without
a defect, and the second terms are governed by the presence of a crack in the layer.

One of the most effective methods for determining jumps in displacements on a crack is to construct systems of
boundary integral equations (BIEs),9,10 which are formulated on the basis of representations (2.1), (2.2), taking into
account the boundary conditions on the crack (1.3). In the case of Problem 1, we have one BIE

(2.3)
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In the case of Problem 2, we obtain a system of two BIEs

(2.4)

BIEs (2.3), (2.4) in the general case of curved cracks can be solved numerically using the boundary element
method.6,7 After finding the functions of the opening of the crack using formulae (2.1), (2.2), it is possible to calculate
the field on the surface of the layer.7,8

In a series of calculations, we investigated the dependence of the displacement fields on the surface of the layer on
the parameters of the rectilinear crack: its depth, length, and angle of inclination to the lower boundary of the layer.

The procedure for solving BIEs is fairly complex and requires considerable computational work. Further simplifi-
cation of the BIEs is possible by means of an asymptotic analysis of the problem for small relative dimensions of the
defect.

3. An asymptotic approach to calculating the wave fields

We will consider in more detail the BIE for Problem 1, having represented the kernel of the integral operator in the
form of the sum of regular and irregular parts

An investigation of the asymptotic forms of integrands R0(x, y) and R1(x, y) as |�1| → ∞ also revealed8 that R1(�1,
x, y) → 0 for all x, y ∈ l, while when x3 = y3 the function R0(�1, x, y) is an increasing function as |�1| → ∞, and the
corresponding integrals are understood in the sense of the finite Hadamard value.11

For cracks allowing of parameterization

BIE (2.3) can be reduced to the form

(3.1)

and here the kernel K̃1(t, �) is a continuous function.
Let us consider in more detail the case of a rectilinear crack of length 2l0 with an angle of inclination � to the

lower boundary of the layer, the mid-point of which lies on the Ox3 axis at a distance d0 from the lower boundary. The
quantity L is the distance from the point of application of the load along the Ox3 axis. The parametric equations of
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such a crack have the form

(3.2)

Taking into account the parameterization introduced, and evaluating the integral on the right-hand side using the
theory of residues, Eq. (3.1) becomes

(3.3)

The set {�n} consists of a denumerable set of pure imaginary components and a finite number N of real components.
The real �n correspond to travelling waves in the layer, while the remainder characterize inhomogeneous modes, the
amplitudes of which decrease exponentially.

Note that BIE (3.3) can be solved numerically by the boundary element method.7,8 At the same time, for short
cracks, to construct an approximate solution of BIE (3.3) it is possible to use an asymptotic approach based on a
three-step asymptotic model.9 At the first stage, a representation of a reference stress field on the crack is constructed.
Then, the infinite sum on the right-hand side of BIE (3.3) can, with an accuracy O(e−	L), 	 > 0, be replaced by a finite
sum, retaining the first N terms.

For a rectilinear crack, with a low value of l0, the next stage of constructing the wave field can be simplified
considerably by determining the principal term of the asymptotic form of the function of the opening of the crack. For
this, we investigate the asymptotic form of the kernels in the first term of BIE (3.3), assuming the linear dimension of
the defect to be small. Letting l0 → 0, we obtain in the limit an integral equation with a constant right-hand side

(3.4)

Integral Eq. (3.4) has the following solution in the class of bounded functions11,12

(3.5)

After determining the function of the opening of the crack, it is possible to construct the wave field in the layer,
in particular on its surface. Evaluating the contour integral in formula (2.1) using the theory of residues, and singling
out the amplitudes of the displacement field on the upper boundary (x1 > 0) in the far zone, we obtain the following
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convenient formula for calculating the wave field

(3.6)

which can then be used effectively to solve the inverse problem.

4. Identification of the parameters of a rectilinear crack

The solution of the inverse problem of reconstructing the crack parameters is based on the solution of the direct
problem and additional information (1.4). For a rectilinear crack allowing of parameterization (3.2), the problem of
identifying the crack reduces to the problem of determining the crack parameters l0, d0, � and L. Note that the amplitudes
of the surface waves are proportional to the square of the crack length.

Problem 1. Let us assume that the amplitude values A∗
n(n = 1, 2) of the displacement field in the far zone of the upper

boundary are specified as additional information. The identification procedure is carried out by frequency probing. For
unique identification it is sufficient to examine two frequencies, k1 and k2, at each of which there are two travelling
waves, A∗

1(k1) and A∗
2(k1) (the amplitudes of the first and second waves at frequency k1), and A∗

1(k2) and A∗
2(k2) (the

amplitudes of the first and second waves at frequency k2), are specified. Using the expressions for the amplitudes (3.6),
it is possible to reduce the problem of identifying a rectilinear crack to a stage-by-stage determination of the crack
parameters, solving transcendental equations.

Stage 1. Determination of the depth of the crack d0. To determine d0, let us examine the ratio of the amplitudes of
the first and second waves, which we will denote as

Then, taking into account the expression for the amplitudes (3.6), we obtain a homogeneous system of two equations
in the parameters d0 and � that is linear in sin � and cos �. From the solution of the system we obtain

(4.1)

Thus, for the unique determination of d0, the values of the amplitudes at a single frequency are insufficient. For this
it is necessary to know the amplitudes at a second frequency k2, to carry out actions similar to analysis of the ratio of
amplitudes at the first frequency and to obtain two roots of d0, one of which will be the true value of d0 and one of the
solutions (4.1).

Stage 2. Determination of the angle of inclination of the crack �, 0 ≤ � < 
. Using the value of d0 found by means
of formula (4.1), the angle of inclination of the crack can be determined from the formula

(4.2)

where, if c12(d) = 0, then � = 0.
Stage 3. Determination of the distance L from the point of application of the load to the vertical axis passing through

the middle of the crack. The quantity L occurs in the expression for W0, and, to determine this parameter, it is necessary
to make two measurements of the amplitudes with different positions of the source. In the first case, the load is applied
at a distance L1 from the crack axis; the corresponding amplitudes are A∗

1(k, L1) and A∗
2(k, L1). In the second case,
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the load is applied at a distance L2 = L1 − L0 from the crack axis; the corresponding amplitudes are A∗
1(k, L2) and

A∗
2(k, L2). Then, to determine L1, from Eq. (3.4) we have the relation

from which we obtain

(4.3)

Hence, the distance L1 cannot be determined uniquely; knowing the amplitudes at a single frequency, it is possible
to obtain only a certain collection of points on the Ox axis. For the unique determination of L1 it is necessary to know
the amplitudes at another frequency. Then, from the intersection of the set of points obtained at the first and second
frequencies, we can determine the coordinate of L.

Numerical experiments showed that the quantity L1 is determined with an error of less than 1% for accurate input
data and is stable to noisy input information.

Stage 4. Determination of the crack length l0. The quantity l0 is determined from one of the expressions for the
amplitudes, for example,

It must be pointed out that the parameter l0 is determined with the least accuracy compared with the remaining
parameters, as the error of its determination, besides the error of the input information, is affected by the error in
identifying the parameters determined at the previous stages.

Calculations were carried out for a layer of thickness h = 1 of austenitic steel (� = 0.64). The frequencies k1 = 5 and
k2 = 6 were selected, at each of which there were two propagating waves; L0 = −0.4. The parameters d0, � and L1 were
determined from formulae (4.1)–(4.3). As expected, as the crack length increases, the corresponding relative errors in
determining the crack parameters are �d0 = |d0 − da

0 |/da
0 , �θ = |� − �a|/�a and �L1 = |L1 − La

1|/La
1. The true values

are da
0 = 0.5, �a = 
/3 and La

1 = 5.6.
From the numerical results on determining d0, � and L1 as a function of the crack length l0, presented in Fig. 1, it

can be seen that, when l0 ≤ 0.2h, the error in determining the crack parameters d0, � and L1 is less than 5% for accurate
input data; the crack length is determined with an error of less than 10%. The results indicate that the procedure for
identifying the crack parameters is fairly stable.

Fig. 2 shows graphs of the relative error in determining the parameters d0 = 0.5, � = 
/4 and L1 = 5.6 as a function
of the degree of noisyness of the input data, �, at frequencies k1 = 5 and k2 = 7.8. It can be seen that, with an error in
prescribing the input data � ≈ 20%, the parameters d0, � and L1 are determined with an error of about 1% for l0 = 0.01

Fig. 1.
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Fig. 2.

and with an error of about 5% for l0 = 0.1. As the crack length increases, the error in determining the parameters d0, �
and L1 depends to a greater extent on the accuracy of the input data.

Problem 2. The kernel of BIE (2.4), as in Problem 1, can be represented in the form of the sum of irregular and
regular parts

(4.4)

The structure of the kernel (4.4) was investigated, the main terms of the asymptotic forms of the integrands
k

(s)
ji (�1, x, y) as |�1| → ∞ were singled out and it was found that k

(1)
ji (�1, x, y) are functions decreasing at infin-

ity, while k0
ji(�1, x, y) are functions increasing at x3 = y3, and here the corresponding integrals are understood in the

sense of the final Hadamard value.11 For cracks allowing of the previously introduced parameterization xj = qj(t) and
yj = qj(�), BIE (2.4) can be reduced to the form

(4.5)

where M
(1)
ji and M

(2)
ji are continuous functions, which depend on the constants of the material and on the components

of the vector of the normal at points of the curve l.
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For a crack allowing of parameterization of the form (3.2), BIE (4.5) becomes

(4.6)

Note that, when the rectilinear crack is vertical (� = 
/2) or horizontal (� = 0), BIE system (4.6) breaks down into
two independent BIEs: one in ̃1 and the other in ̃3; in the case of an arbitrary rectilinear crack, this does not occur,
and the components of the jumps are interconnected.

Below, considering cracks of small relative length, as above, in the limit as l0 → 0, we obtain a system of integral
equations with constant right-hand sides

(4.7)

This system has a solution in the class of bounded functions11,12 of the form

(4.8)

Then, the components of the displacement fields at the upper boundary can be represented in the form

(4.9)

and here, as in the case of Problem 1, the wave amplitudes are proportional to the square of the crack length.
The identification procedure can be carried out in terms of the values of the amplitudes of the wave fields or the

components of the displacements on the upper boundary of the layer. The statement of the inverse problem, in which
the wave fields on the upper boundary of the layer are themselves specified as additional information, was considered.
In this case, the uniqueness of the solution of the inverse problem depends on the position of the probing points, i.e. the
points at which the wave fields of displacements and the number of travelling waves are measured. Numerical analysis
of the inverse problem showed that, for the unique determination of the crack parameters during positional probing, it
is sufficient to measure the wave fields of displacements at two points at a frequency at which there are two travelling
waves.

Fig. 3 presents the results of numerical experiments to determine some of the parameters of the rectilinear crack
for a layer of austenitic steel; in the layer there are four propagating modes at k = 4.9. Graphs of the relative error of
determining the parameters d0 and � as a function of crack length are given. The true values of the parameters are
da

0 = 0.33 and �a = 65◦.
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Fig. 3.

The proposed asymptotic approach enables one to determine the parameters of a rectilinear crack whose length is no
more than 20% of the layer thickness, with an error of less than 1% in the case of accurate input data, which indicates
the efficiency of the model for calculating wave fields based on the asymptotic approach, and provides a fairly stable
procedure for identifying short rectilinear cracks.
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